*JSMP医学物理サマーセミナー2011;

閉講式 : 9/3:12:00~12:15 *お知らせ

①セミナー講義資料は、以下よりログインし、必ず、事前に資料ダウンロ ードの上参加ください。LOG IN

②9/1;熊本空港⇒会場Hotel送迎バス;

·第1便;10:15発予定

·第2便:11:55発予定 送迎バス利用者集合場所・発射場所:

熊本空港; 団体ロビー⇒国際線ターミナルビル前 (MAP.pdf)

バスは国際線ビル前に停車しています。発車5分前には各自バスに乗車下 さい。___バス利用希望など事前申込み者番号リスト

③9/1:ホテルで昼食を必要とする方

9月1日昼食はプログラムに含まれていません;ホテルでの昼食を希望す る場合は申込みが必要です。 申込み者リストを確認下さい。 基本的にホテ

ル昼食は予約制になっていますのでご注意ください。

ホテル昼食の追加申込みは事務局宛にご連絡下さい(〆切;8/23)

④他交通手段ご利用の場合は現地集合でお願い致します。 アクセス; http://www.aso-ikoi.jp/access/index.html 1) JR「阿蘇駅」、JR「いこいの村駅」到着の方はホテルへ電話連絡に

よりホテルからの送迎車が利用可能です。(tel:0967-34-2151) 2) 熊本空港からリムジンバスを利用される方は、阿蘇・大分方面行きを 利用し、JR「阿蘇駅」で下車してくだい。(tel:0967-34-2151)

⑤ 9/3: 会場Hotel⇒熊本空港行きバス ·第1 便:12:20 頃発—13:20 頃着予定 ・第2便:13:00過ぎ発

事務局:JSMP教育委員会サマーセミナー実行委員 mailto: <jsmp11 summer@nirs.go.jp> 問合せsubject名<Summer Seminar>

Medical Physics Summer Seminar 2011 in ASO-ikoinomura-kumamoto

JSMP医学物理サマーセミナー2011

September 1-3,2011 Aso-KUMAMOTO

Day 1: Thursday Sep 1 Welcome, Course overwiew 13:15 13:00 Radiation Protection and Safety 1(赤羽恵一) 13:15 14:35 Radiation Protection and Safety 2(赤羽恵一) 14:45 16:05 Magnetic Resonance Imaging 1(山本 徹) 17:35 16:15 Magnetic Resonance Imaging 2(山本 徹) 17:45 19:05 Banquet 19:30

Walking 5:30 6:30 Breakfast 7:00 8:30 External Photon Beams: Physical Aspects(荒木不次男) 9:00 10:20 Electron Beams: Physical and Clinical Aspects(荒木不次男) 10:35 11:55 Lunch 12:00 13:00 Nuclear Medicine/Imaging 1(山谷泰賀) 14:00 15:20 Nuclear Medicine/Imaging 2(山谷泰賀) 16:55 15:35 18:00 19:00 Supper

Night session & Informal Q&A

Day 2: Friday Sep 2

Day 3: Saturday Sep 3 Breakfast 8:30 7:00 MV-CBCT(IGRT)(隅田伊織) 10:20 9:00 Special Procedures and Techniques in Radiotherapy(SRS,SRT)(塩見浩也) 10:35 11:55 Closing remark 12:00 *本プログラム参加の機構認定単位数は下記の通り:

医学物理士認定機構; 医学物理士業績評価単位::10

放射線治療品質管理機構認定単位: C2-1

20:00

22:00

Syllabus

赤羽 恵一(放医研) 1. Introductions and Historical Perspective

1-1. Radiation Protection and Radiation Safety

(b) Observed radiation injury (c) Suggested radiation protection practices

(a) Discovery and early application of ionizing radiation

- (d) Pre-regulatory initiatives 2. Interaction Physics as Applied to Radiation Protection
- (a) Indirectly and directly ionizing radiation (b) Bethe-Bloch formalism for coulomb scattering, shell effects,
- polarization phenomena, nuclear processes, adiabatic scattering, track structure, target
- phenomena, radioactive processes, Anderson-Ziegler parameterization, Janni tabulation,
- and effects due to mixtures and compounds
- (c) Electromagnetic interaction: photoelectric effect, Compton effect, pair production,
- shower cascade phenomena
- (d) Neutron interactions: elastic and non-elastic processes
- 3. Operational Dosimetry (a) Units
- (b) Kerma and absorbed dose
- (c) Dose equivalent ii. Dose/dose equivalent interpretation
- ii. Pulse field response
- 5. Shielding: Properties and Design (a) Directly ionizing particles
- (b) Indirectly ionizing particles
- (c) Build-up parameterization (d) Stochastic sampling: Monte Carlo
- Source description and sampling
- ii. Interaction sampling iii. Geometry effects
- iv. Scoring
- v. Public domain codes (e) Particle Accelerators
- i. Primary particle shielding
- ii. Secondary-tertiary particle shielding iii. Energy and particle type dependence
- iv. Interlocks and access control v. Modeling radiation environment
- (f) NCRP (National Council on Radiation Protection and
- Measurements) shielding recommendations and techniques
- 6. Statistics (a) Statistical interpretation of instrument response
- (b) Design of experiments
- (c) Stochastic and nonstochastic error analysis (d) Interpreting experimental results
- 7. Radiation Monitoring of Personnel (a) Instrumentation and techniques
- (b) Integral and active devices (c) Dynamic range and response sensitivities
- (d) Film, TLD, Lexan, and CR-39
- (e) Pocket ion chambers and GM counters (f) Pregnant workers and fetal dose limits
- 8. Internal Exposure (a) ICRP 26, ICRP 2A recommendations
- (b) Medical internal radiation dose (MIRD) dosimetry (c) Monitoring and radiation control
- (d) Biological assay (e) Dispersion in a working environment (f) Allowed limit of intake and derived air (or water)
- concentrations 9. Environmental Dispersion
- (a) Release of radionuclides to the environment (b) Dosimetric consequences
- (c) Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission
- (NRC) air and water dispersion models 10. Biological Effects
- (a) Basic radiation biology (b) Nonstochastic and stochastic responses
- (c) Biological experimental data base of radiation injury
- (d) BEIR (Biological Effects of Ionizing Radiation) and UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Reports
- (e) Patient and fetal dose issues 11. Regulations (a) What is; what is not
- (b) 10CFR19-70; 49USDOT300-399, 198; 219SFDA 278;
- 290SHA; 42USPHS; 40USEPA
- (c) States: agreement or not (d) Relationship to NCRP and ICRP (International Commission on
- Radiation Protection) 12. High/Low Level Waste Disposal
- (a) USNRC/USDOE/USEPA Repository (U.S. Nuclear Regulatory Commission/
- Department of Energy/Environmental Protection Agency)
- (b) Low level compacts (c) Future impacts
- 13. Nonionizing Radiation (a) Electromagnetic and sound hazards
- (b) Device emission requirements (c) Measurement techniques

1-2 Magnetic Resonance Imaging

(d) Regulatory control

1. Basic Principles

(a) Intrinsic and extrinsic parameters affecting MR image contrast (b) Required properties of nuclei that are useful in MR

(c) The static magnetic field (B₀) and the equilibrium distribution (d) The Larmor frequency and the radiofrequency field (B1) (e) The lab and rotating frames of reference

山本 徹(北海道大学)

- (f) Relaxation mechanisms (T₁, T₂, T₂*) and effects of common contrast agents
- (g) The basic spin-echo sequence
- (h) Contrast in spin-echo imaging (i) Spatial encoding using linear magnetic field gradients (G_x , G_y ,
- Gz) i. Slice selection
- ii. Frequency-encoding iii. Phase-encoding
- (j) Properties of "k-space" 2. Hardware
- (a) The static magnetic field subsystem i. Common field strengths and magnet designs

iv. 2D vs. 3D acquisitions

- ii. Siting issues (b) The radiofrequency (RF) field subsystem
- . Coil designs: volume, surface, phased array
- ii. Radiofrequency shielding requirements (siting) (c) The gradient field subsystem i. Maximum amplitudes, risetimes, and slew rates
- ii. Eddy current effects and compensation techniques 3. Basic Image Quality Issues
- (b) Resolution (c) Image acquisition time

- 4. Basic Pulse Sequences (a) Spin-echo sequence
- (b) Gradient-echo sequences
- (c) Fast spin-echo sequence (d) Inversion recovery sequences and applications [STIR, FLAIR
- (Short Time Inversion Recovery, Fluid-Attenuated Inversion Recovery)] (e) Common sequence options (spatial and chemical saturation
- techniques) (f) Ultrafast imaging sequences (echo planar imaging and spiral
- techniques) (g) MR flow sensitive sequences
- i. Flow-related phenoma ii. Time-of-flight MRA
- iii. Phase contrast MRA iv. Bolus contrast agent-enhanced MRA
- vi. Diffusion-weighted and diffusion tensor imaging

v. Perfusion sensitive imaging

ii. Imaging methods iii. Experiment design and analysis

(h) Functional MRI neuroimaging techniques

- (i) MR spectroscopy (MRS) sequences (j) Parallel imaging techniques
- (d) Chemical shift (e) Truncation

(f) System-related

iii. Ghosting

i. Physiological basis

- i. Distortions ii. RF coil problems and RF interference
- iv. Receiver/memory/array processor problems (g) Spatial accuracy limits and optimization

physiological effects)

control aspects

- 6. Safety and Bioeffects (a) Static field considerations (projectile, effects on implants,
- (c) Gradient field considerations (peripheral nerve stimulation, sound pressure levels)
- (d) Food and Drug Administration (FDA) guidelines (e) MR and pregnant patients, technologists, and nursing staff
- (a) The ACR (American College of Radiology) standards related to MRI (b) The ACR MR Accreditation Program (MRAP)
- (d) Other guidelines, including AAPM task group reports and NEMA (National Electrical Manufacturers Association) reports
- 2-1. External Beam Radiation Therapy 荒木不次男 (熊本大学) 1. Clinical Photon Beams: Description
- (a) Basic parameters: Field size, source-skin distance, source-axis distance, sourcecollimator distance
- (c) Field collimators: Primary, secondary, and tertiary placement of collimators;
- rectangular (upper and lower jaws); circular; multileaf collimators 2. Clinical Photon Beams: Point Dose Calculations (a) Percentage depth dose (PDD)
- (b) Peak-scatter factor (PSF) (c) Tissue-air ratio (TAR)
- (f) Scatter function (g) Scatter-air ratio (SAR)
- (h) Scatter-maximum ratio (SMR) (i) Collimator factor (j) Relative dose factor/output factor
- (a) Factors affecting the fundamental dosimetry quantities (b) Relationships between the fundamental dosimetry quantities (c) Collimator and phantom scatter corrections
- (d) Irregular fields and Clarkson's integration method
- (a) Electron treatment head i. Energy selection
- ii. Beam broadening methods: dual scattering foil vs. scanned beam iii. Collimating methods: trimmers vs. applicators (cones)
- (c) Energy spectrum i. Characteristics (_E, E_p)
- (d) Dose distribution i. Beam flatness and symmetry
- ii. Penumbra iii. Isodose plots
- ii. Output factor formalisms (f) Effect of air gap on beam dosimetry

(g) Fundamental principles

- i. Square-root method ii. Effective vs. virtual source
- 5. Special Photon and Electron Beams
- i. Linacs with multileaf collimators
- ii. Tomotherapy iii. Stereotactic beams and robotic linacs (b) Intensity-modulated radiation therapy with electron beams

2-2. Nuclear Medicine/Imaging 山谷泰賀 (放医研)

1. The Gamma Camera

- (a) Camera characteristics (b) Collimators
- (c) Crystals (d) Photomultiplier tube array (e) Image formation
- (g) The pulse height analyzer 2. Radionuclide Image Quality
- (b) Blur and visibility of detail (c) Image noise

(a) Contrast

modes

(f) Spectrometry

- ii. Clinical PET imaging procedures
- . Principles of SPECT imaging, hardware, resolution ii. Clinical SPECT imaging procedures
- 5. Patient Exposure and Protection (a) Internal dosimetry
- procedures
- 6. Personnel Exposure and Protection
- (c) Exposure sources
- (f) Exposure from radioactive sources
- (b) Survey meters (c) Activity measurement
- 8. Principles of Radiochemistry, Radioimmunoimaging, and the Radiopharmacy
- (b) Radioimmunoimaging and radioimmunotherapy principles (c) Radiopharmacy techniques 9. Quality Control Issues in Nuclear Medicine

隅田伊織 (大阪大学) 3.1.1 Portal Imaging

3-1.IMAGING FOR TREATMENT GUIDANCE AND

(e) Registration to DRR (f) Imaging dose (g) QA

(d) DRR calculation from CT

MONITORING

- 3.1.2 Cone-Beam CT (a) Large-field CT, field size
- (e) Imaging artifacts (g) QA
- 1. Special External Beam Radiotherapy Techniques: Basic Characteristics, Historical Development, Quality Assurance (Equipment and Treatment),

塩見浩也 (大阪大学)

3.2 Special Techniques in Radiotherapy

- (a) Stereotactic radiosurgery (b) Stereotactic radiotherapy

- (d) Uniformity (e) Clinical gamma camera applications 3. Radionuclide Tomographic Imaging (a) Positron Emission Tomography (PET) and PET-CT . Principles of PET imaging, hardware, resolution, acquisition iii. Quantitative PET imaging iv. Cine (4D) PET (b) Single Photon Emission Computed Tomography (SPECT)
- iii. Quantitative SPECT imaging 4. Statistics: Counting Error
- (b) Clinical dosimetry and typical doses for common imaging (c) Radionuclide therapy dosimetry
- (a) Effective dose equivalents (b) Exposure limits
- (d) Area shielding (e) Personnel shielding
- 7. Radiation Measurement (a) Ionization chambers
- (a) Radiochemistry principles
- (c) The ACR MR Quality Control Manual and its recommended quality

(a) Portal film, electronic portal imaging (b) Types of imaging panels, technologies (c) Scatter

- (b) MV cone-beam CT (c) Scatter, scatter rejection (d) Imaging quality (f) Imaging dose (Dose incorporation to plan)
- Diseases Treated

- (a) Intensity-modulated radiation therapy with photon beams

- 5. Artifacts and Methods for Artifact Rejection/Reduction iii. TLD energy, dose, dose rate response (a) Motion (c) Dose equivalent instrumentation (b) Aliasing or "wrap-around" . Energy dependence (c) Metal objects
 - (b) RF field considerations (tissue heating, specific absorption rate, burn injuries)
 - (f) Common MR contrast agents 7. Quality Control

 - (b) Field size options: Circular, square, rectangular, irregular
 - (d) Tissue-maximum ratio (TMR) (e) Tissue-phantom ratio (TPR)
 - (k) Off-axis ratio 3. Clinical Photon Beams: Basic Clinical Dosimetry
 - (e) Tissue heterogeneities and corrections 4. Clinical Electron Beams
 - (b) Depth-dose distribution i. Characteristics (Ds,Dx,R100,R90,Rp,R90-10) ii. Variation with energy and field size
 - ii. Specification at surface (range-energy relationships) and depth
 - i. Method of dose prescription

(e) Determination of monitor units

- iii. Side-scatter equilibrium

- (a) Signal-to-noise ratio and contrast-to-noise ratio in MRI

- 会期:9月1日(木)~9月3日(土) 会場受付:9/1:12:30-13:00 開講式 : 9/1:13:00~13:15
- 会場: <u>リゾートホテル阿蘇いこいの村</u> (tel:0967-34-2151)