肺定位放射線治療における 放射線治療計画手法の実態調査 アンケート

医学物理学会QAQC委員会 第一班

上田悦弘 高倉亨 太田誠一 木藤哲史 佐々木浩二 清水秀年 辰己大作 矢野慎輔 中村光宏

肺定位放射線治療の成績について

- ✓ SBRTやSBARは手術に匹敵する成績を達成した有用な 技術である [1-4]
- ✓ ステージI期非小細胞肺癌に対するSABRの第II相試験では、3年のフォローアップで局所制御率92%の高い治療成績を残している [1,5]

- 1.Timmerman R, et al. JAMA 2010;303:1070-6.
- 2. Onishi H, et al. J Thorac Oncol 2007;2:S94-S100.
- 3. Senthi S, et al. Lancet Oncol 2012;13:802-9.
- 4. Solda F, et al. Radiother Oncol 2013;109:1–7.
- 5.Baumann P et al. J Clin Oncol 2009;27:3290-6.

多施設における線量に関する報告

- ✓ 体幹部定位照射の処方や照射方法について一貫されていない [6]
- ✓ Dasらの調査によると、米国の8施設のDVHデータの 解析において、大きな線量差があった [7]
- ✓ Giglioliらの調査によるとイタリアの26施設において PTV-gEUD2は105-161 Gyの範囲にあった [8]

- 6. Eaton et al, IJROBP 2015;91(1):pp239-241.
- 7. Das et al, IJROBP 2017;99(2):S68-S69.
- 8. Giglioli et al, Phys Med 2016;32:pp600-606.

放射線治療計画方法 調査の意義

- ✓ Suzukiらの報告によると、高線量を投与した方が局所制御率 が高い [9]
- ✓ 投与される線量が成績に依存することから、施設間によって 治療成績に差があることが予想される
- ✓ 肺においては治療計画装置や線量計算パラメータが 線量計算結果に依存することが知られており [10-12], 先行研究のようなDVH解析では、線量計算のパラメータが 関与する線量差については評価しづらい
 - Suzuki et al, Radiothe Oncol 2014;112:pp262-266.
 Aarup et al, Radiothe Oncol 2009;91:pp405-414.
 - 11. Kry et al. IJROBP 2013;85(1):95-100. 12. Sini et al. IJROBP 2015;31(4);382-390.

動機/目的

✓ 肺がん定位放射線治療の線量計算手法について施設間で 評価することは、標準化に向けて重要である

✓ 本研究の目的は日本における肺定位放射線治療の 線量計算の実態を明らかにするため、アンケートを用いた 調査を実施した

方法

- 1. アンケート実施期間
 - ➤ 2017年4月から6月の2ヶ月間
- 2. アンケートの構成 大項目
 - A) 施設における状況
 - B) 放射線治療計画の方法
 - B-1 呼吸性移動対策の無い場合 (以下,対策無)
 - B-2 呼吸性移動対策の有る場合 (以下,対策有)

設問の内容 A) 施設における状況

1. 実施に関する状況

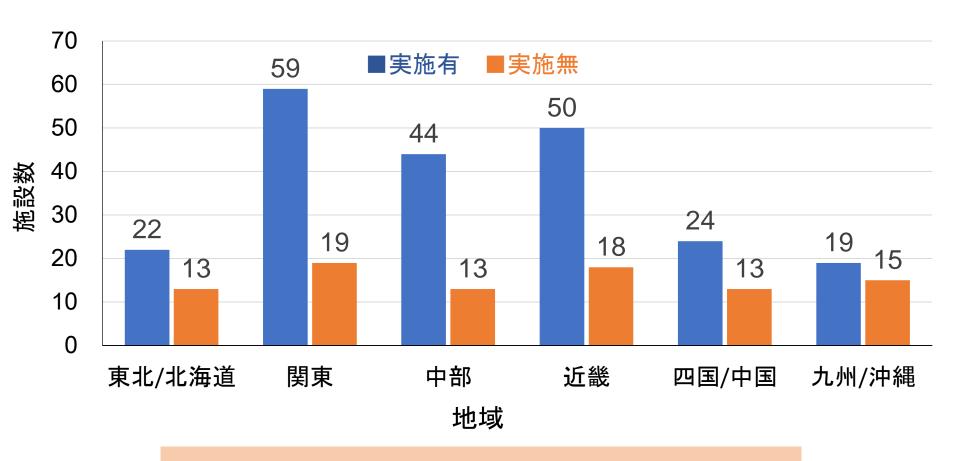
- ✓ 2016年度 実施患者数
- ✓ 実施の有無と使用装置について

2. 呼吸抑制移動対策に関する実施状況

- ✓ 呼吸性移動対策の方法
- ✓ 呼吸性移動対策を実施している基準について

設問の内容 B) 放射線治療計画の方法

1. CTの取得 2. ビームの決定 3. 線量計算

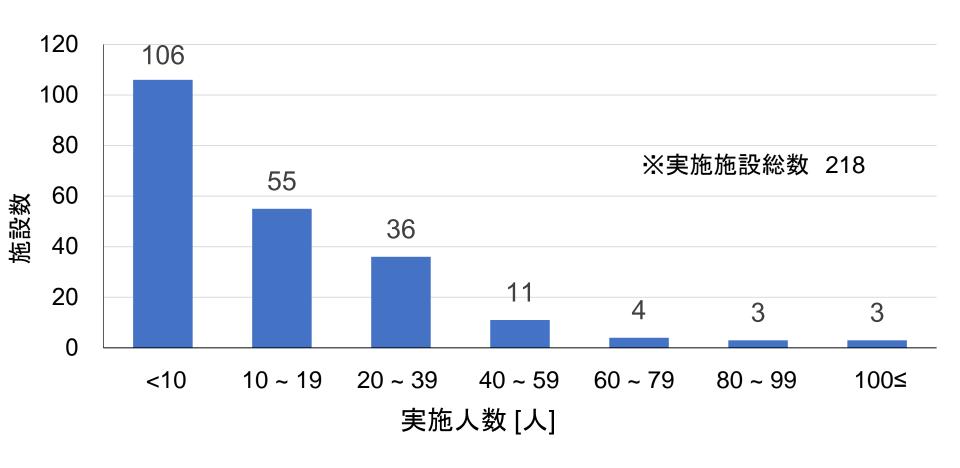

- 1. 呼吸抑制方法
- 2. CTスライス厚
- 3. ITVの設定画像
- 1. 照射方法
- 2. X線エネルギー
- 3. セットアップマージン
- 4. MLCマージン

- 1. 線量計算画像
- 2. グリッドサイズ
- 3. 計算アルゴリズム
- 4. 不均質補正
- 5. 処方体積
- 6. 処方線量
- 7. 処方の設定

結果

- A) 施設における状況
- B) 放射線治療計画の方法
 - 1. 各照射法における施設数と割合

回答施設数 地域別



- ✓ 全国309施設から回答を回収
- ✓ 実施施設数/無実施施設数 合計 = 218/91

設問の内容 A) 施設における状況

- 1. 実施に関する状況
 - ✓ 2016年度 実施患者数
 - ✓ 実施の有無と使用装置について
- 2. 呼吸抑制移動対策に関する実施状況
 - ✓ 呼吸性移動対策の方法
 - ✓ 呼吸性移動対策を実施している基準について

2016年度 実施人数

✓およそ半数の施設で年間10人未満

リニアック保有台数

リニ	アック保存	自台数での P	内訳,()内口	は各件数での	の割合
	件数	1台	2台	3-5台	6台以上

	11 22	· —			
実施	218	94	82	40	2
一大心	210	(43.1%)	(37.6%)	(18.3%)	(0.9%)
土宝坛	91	85	4	2	0
未実施	91	(93.4%)	(4.4%)	(2.2%)	(0%)

- ✓未実施の施設では9割以上の施設で保有台数が1台
- ✓実施している施設では複数保有する施設の割合が増加

保有リニアックのIGRT機能

IGRT機能(性能)での内訳, ()内は各件数での割合					
	件数	軟部組織	インプラント	骨	機能無し
実施	218	198 (90.8%)	86 (39.4%)	70 (32.1)	3 (1.4%)

11

(57.1%) (12.1%) (17.6%)

16

27

(29.7%)

✓ 実施施設 215施設 (98.6%)でIGRTが可能

52

未実施

91

✓ 未実施施設 27 (29.7%)の施設でIGRTが不可能

治療計画装置台数

治療計画装置保有台数での内訳,()内は各件数での割合

	件数	1台	2台	3-5台	6台以上
実施	218	22 (10.1%)	40 (18.3%)	93 (42.7%)	63 (28.9%)
未実施	91	55 (60.4%)	24 (26.4%)	12 (13.2%)	0 (0%)

- ✓ 実施している施設では70%以上が3台以上のTPSを保有
- ✓ 未実施の施設において半数以上においてTPSが1台

未実施の理由

✓未実施の施設の半数において、職種不足・装置性能不足

- 1. 人員に関する理由
 - ✓ 職種が足りない 47施設 (51.6%)
 - ✓ 人数が足りない 34施設 (37.4%)
- 2. 装置に関する理由
 - ✓ 治療装置の性能不足 47施設 (51.6%)
 - ✓ TPSの性能不足 12施設 (13.2%)

✓施設数(未実施の総施設数(91施設)に対する割合)

設問の内容 A) 施設における状況

- 1. 実施に関する状況
 - ✓ 2016年度 実施患者数
 - ✓ 実施の有無と使用装置について
- 2. 呼吸抑制移動対策に関する実施状況
 - ✓ 呼吸性移動対策の方法
 - ✓ 呼吸性移動対策を実施している基準について

呼吸性移動対策の有無

呼吸性移動対策の有無	施設数(総数に対する割合)
対策無のみ	79 (36.2%)
対策無と有が混在	107 (49.1%)
対策有のみ	32 (14.7%)

※総数 218

- ✓ 対策無の総施設数 186 (79 + 107)
- ✓ 対策有の総施設数 139 (32 + 107)

呼吸性移動対策の方法

呼吸性移動対策の方法	施設数(総数に対する割合)
呼吸同期	49 (35.3%)
息止め	77 (56.8%)
追尾	11 (7.9%)
回答無し	2 (1.4%)

※対策有 総数 139

✓ 最も多い呼吸性移動対策が息止め照射であり、半数以上の施設で使用された

呼吸性移動対策の実施基準

※対策有 総数 139

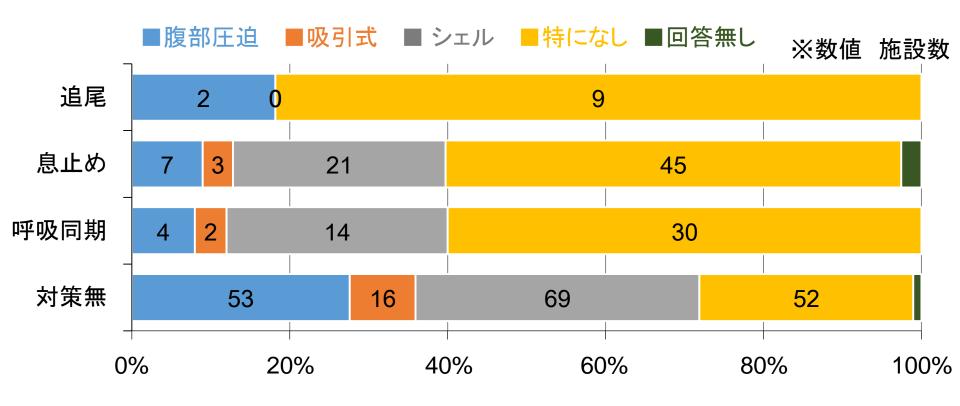
実施基準	施設数(総数に対する割合)
いずれかの方向5 mm	15 (10.8%)
3次元ベクトルで5 mm	11 (7.9%)
3次元ベクトルで10 mm ガイドラインの基準	34 (24.5%)
いずれかの方向 <mark>10 mm</mark>	35 (25.2%)
その他 基準値10 mm	2 (1.4%)

✓ 5 mmを基準としている施設に比べて, 10 mmを基準 として使用している施設が多い

結果

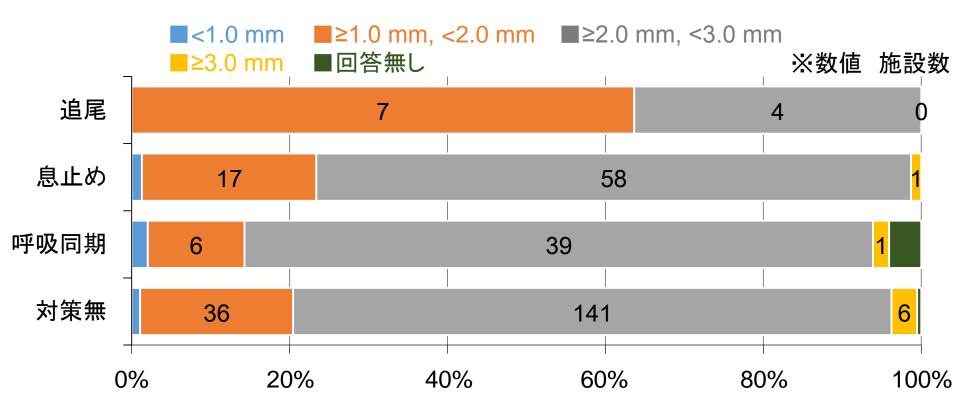
- A) 施設における状況
- B) 放射線治療計画の方法
 - 1. 各照射法における施設数と割合

設問の内容 B) 放射線治療計画の方法

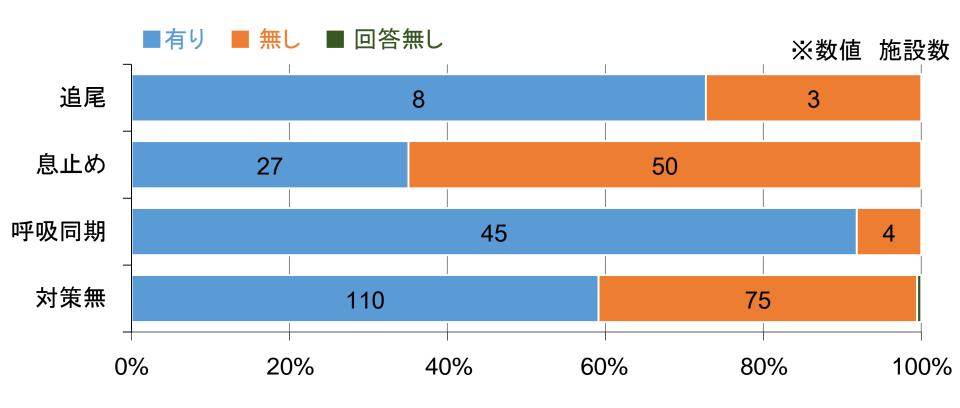

- 呼吸抑制方法 1.
- 3.

CTの取得 2. ビームの決定 3. 線量計算

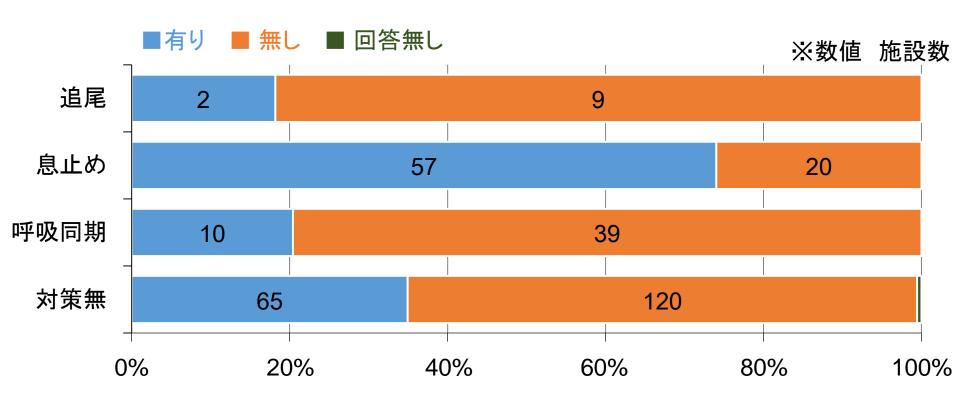
- 照射方法 1.
- 2. CTスライス厚 2. X線エネルギー 2.
 - ITVの設定画像 3. セットアップマージン 3. 計算アルゴリズム
 - 4. MLCマージン


- 線量計算画像
- グリッドサイズ
- 4. 不均質補正
- 5. 処方体積
- 処方線量 6.
- 処方の設定

呼吸抑制方法


- ✓対策無では半数以上で腹部圧迫,シェル,吸引式等を使用
- ✓対策有では半数以上で「特になし」

CTスライス厚

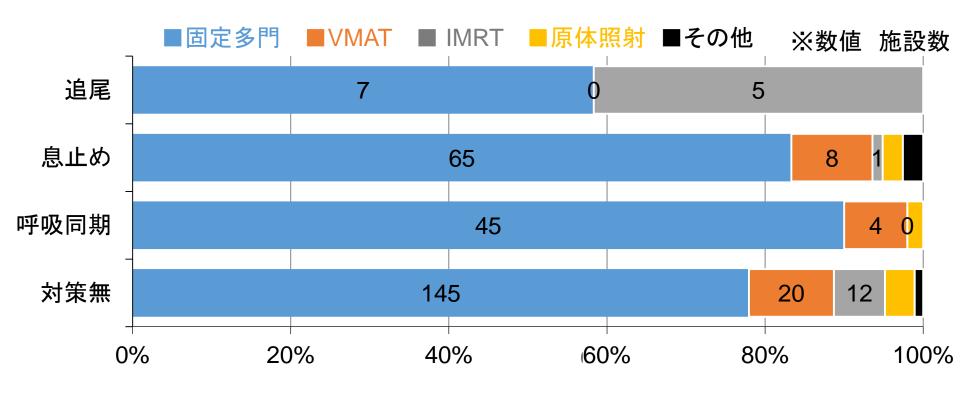

✓ 2.0 mm以上, 3.0 mm未満のCTを使用する施設が多い

ITV設定の画像 4DCTの有無

✓対策無・呼吸同期・追尾照射においてITVに設定のため 4DCT画像を使用する施設は半数を超えた

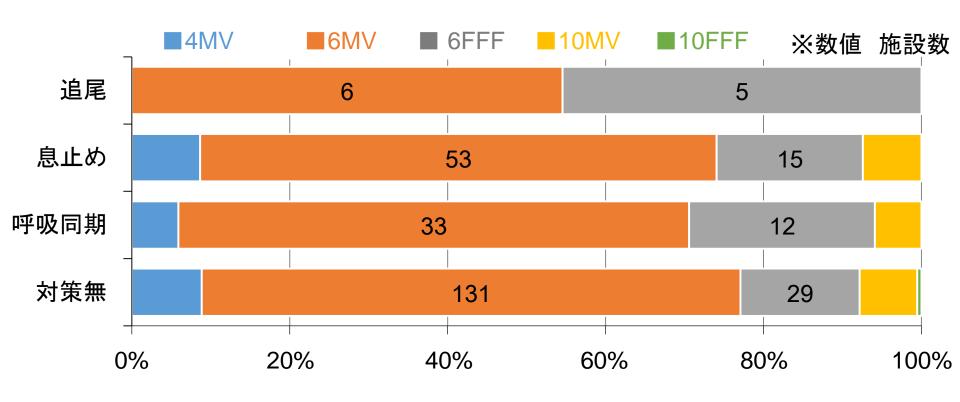
ITV設定の画像 息止めCTの有無

✓息止め照射において息止めCT使用する施設が半数を超えた

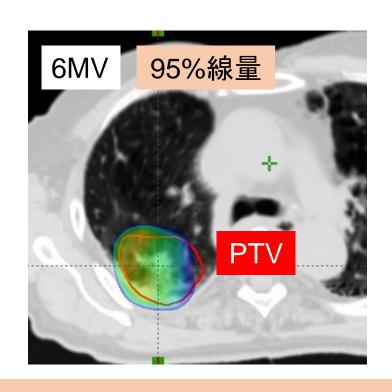

設問の内容 B) 放射線治療計画の方法

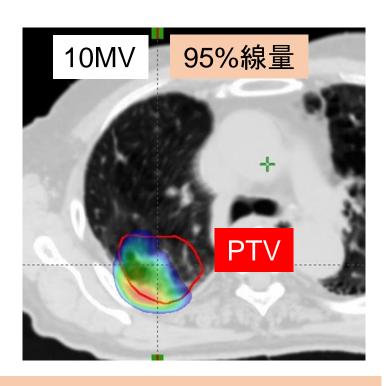
1. CTの取得 2. ビームの決定 3. 線量計算

- 1. 呼吸抑制方法
- 2. CTスライス厚
- 3. ITVの設定画像
- 1. 照射方法
- 2. X線エネルギー
- 3. セットアップマージン
 - 4. MLCマージン

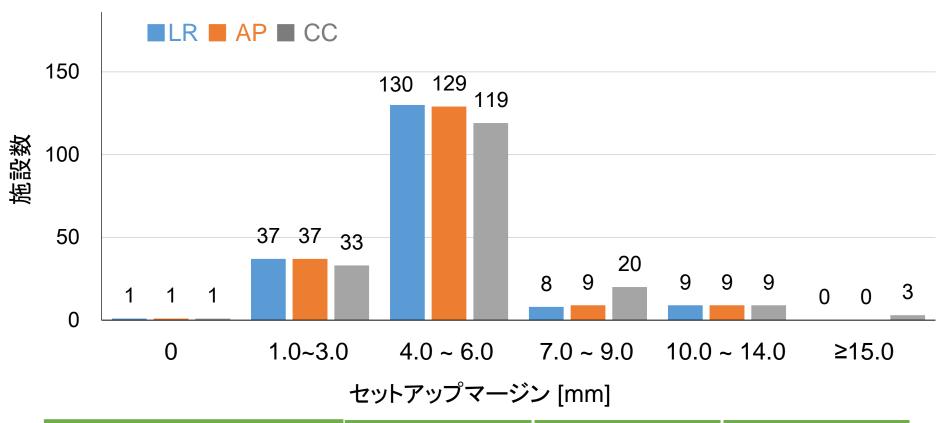

- 1. 線量計算画像
- 2. グリッドサイズ
- 3. 計算アルゴリズム
- 4. 不均質補正
- 5. 処方体積
- 6. 処方線量
- 7. 処方の設定

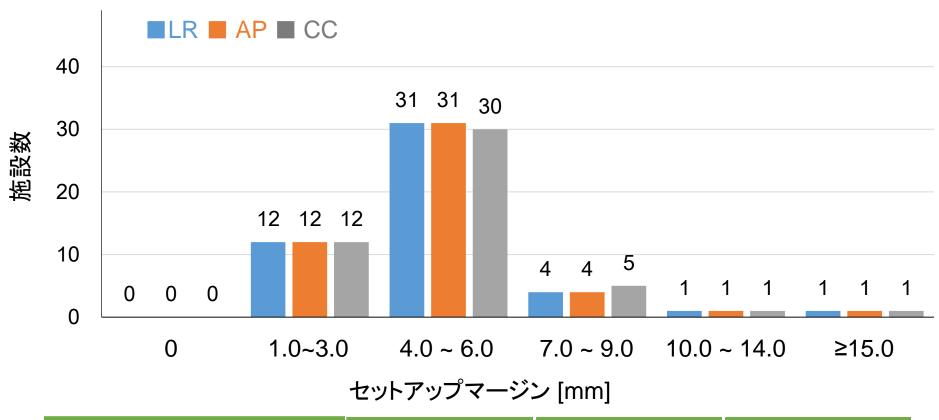
照射方法


✓固定多門照射がすべての方法において最も多い

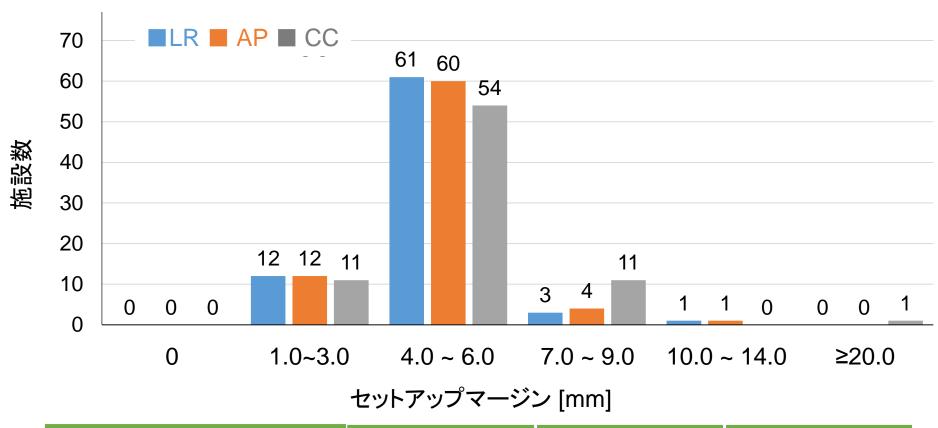

X線エネルギー

✓照射法に関わらず6 MVを使用する施設が多い

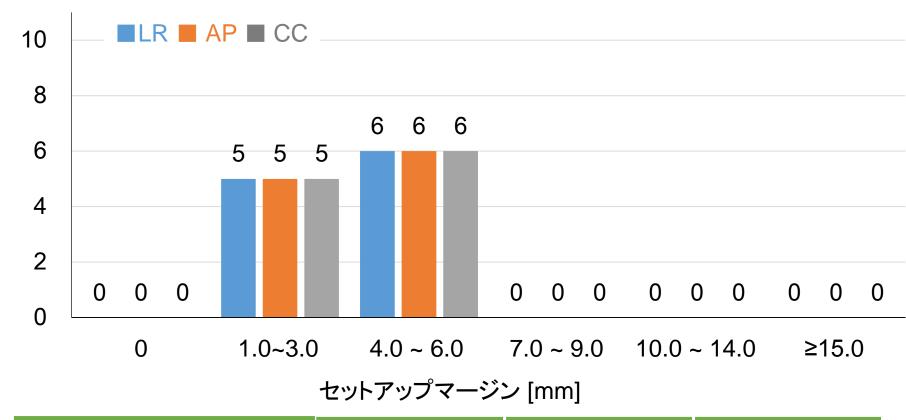

低エネルギーが使用される理由


✓ 低エネルギーを使用した方がPTVに対するカバーが良好

セットアップマージン 対策無

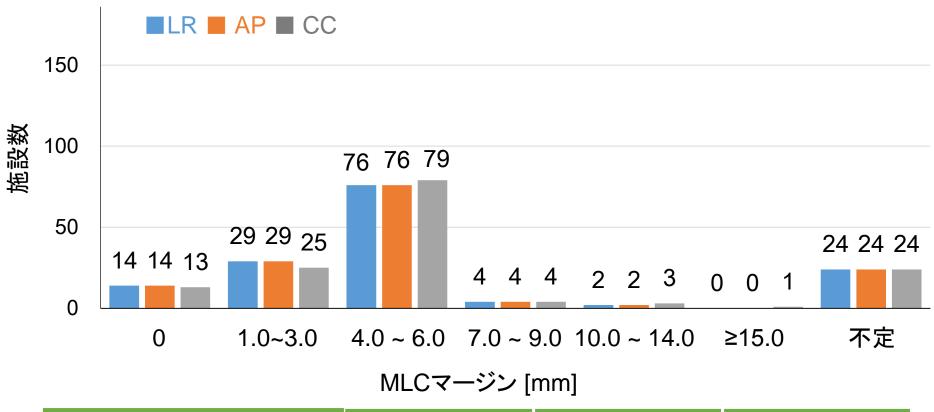

方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	118	117	109

セットアップマージン 呼吸同期

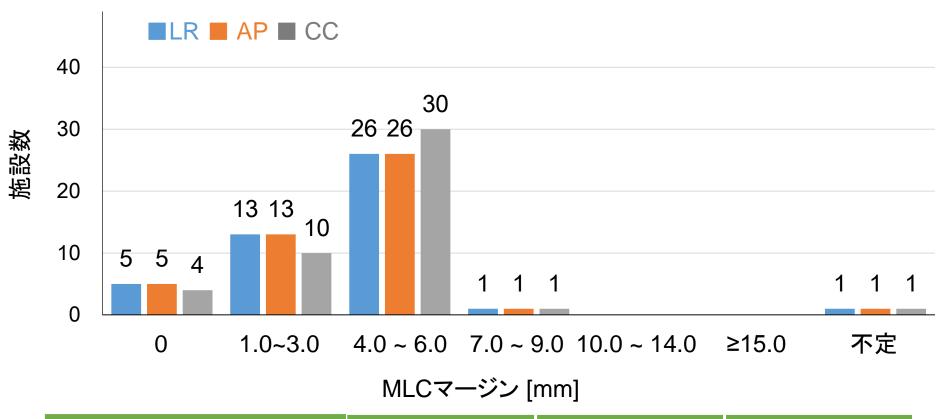

方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	29	29	27

セットアップマージン息止め

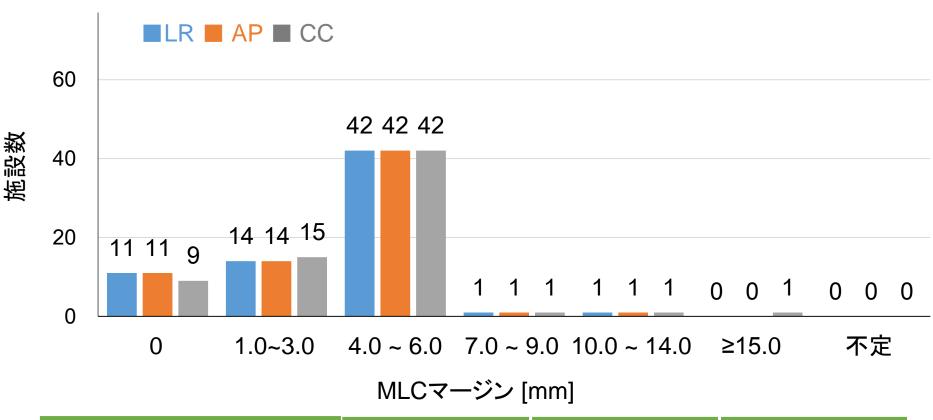
方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	57	55	50


セットアップマージン 追尾

施設数


方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	5	5	5

MLCマージン 対策無


方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	73	73	73

MLCマージン 呼吸同期

方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	26	26	27

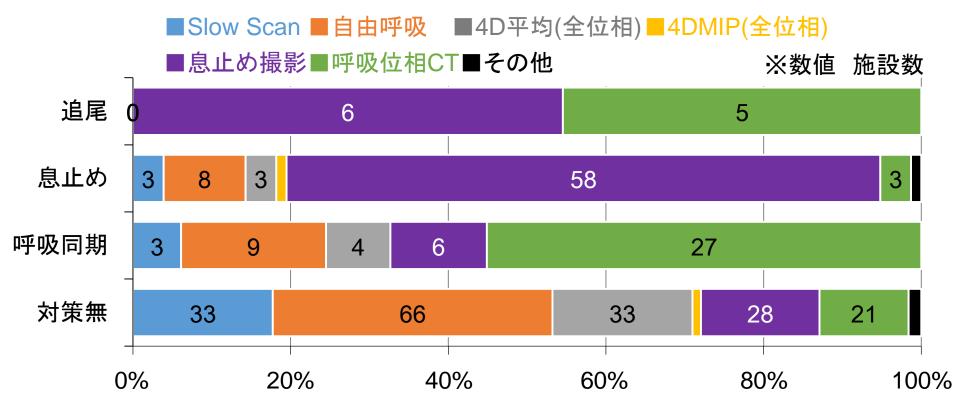
MLCマージン 息止め

方向	LR	AP	CC
最頻度マージン [mm]	5.0	5.0	5.0
施設数	39	39	39

Isodose処方とMLCマージン

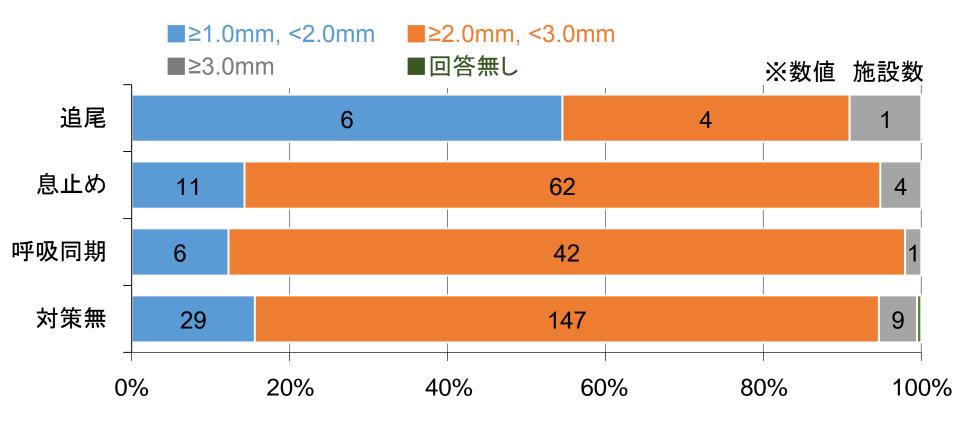
Isodose処方
 PTVの辺縁を60~90% isodose ラインと一致
 PTV内線量は不均一で、中心線量が高い

Zimmermann et al, ActaOncol 2006, Vol. 45, 796-801 Fakiris et al, IJROBP 2009, Vol. 75, 677-682 Baumann et al, Acta Oncol, 2006, Vol. 45, pp787-795. Ricardi et al, Lung Cancer 2010, Vol. 68, 72-77.


• 辺縁線量が60% isodoseでは照射野は、ほぼPTVと同じ (MLCマージン=0 mm)
Oku et al. PRO 2012

設問の内容 B) 放射線治療計画の方法

1. CTの取得 2. ビームの決定 3. 線量計算

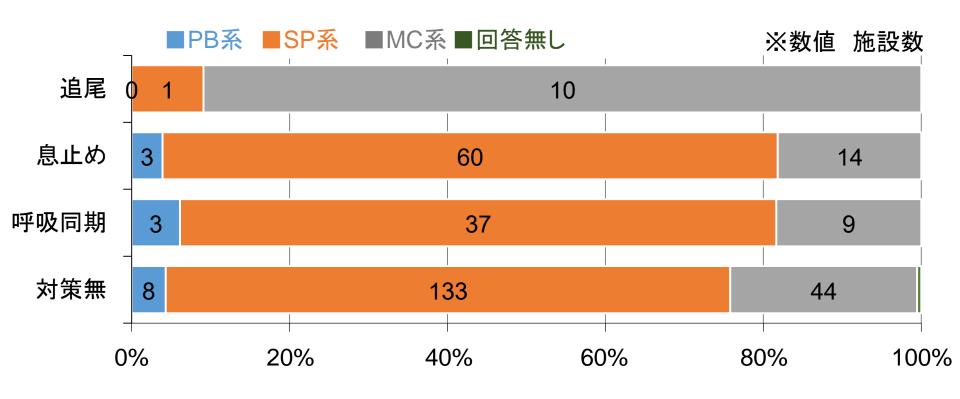

- 呼吸抑制方法 1. 照射方法 1.
- 2. CTスライス厚 2. X線エネルギー
- 3. ITVの設定画像 3. セットアップマージン
 - 4. MLCマージン
- 線量計算画像
- グリッドサイズ 2.
- 3. 計算アルゴリズム
- 4. 不均質補正
- 処方体積 5.
- 6. 処方線量
- 処方の設定

線量計算用画像

✓対策有の場合、特定の呼吸位相のCT画像を使用する割合 が対策無に比べて多い

グリッドサイズ

- ✓対策無, 呼吸同期, 息止め照射において2.0 mm以上, 3.0 mm未満のグリッドサイズを使用する施設が多い
- ✓追尾照射においては1.0 mm以上, 2.0 mm未満が多い


計算アルゴリズムのカテゴリ分類

- ➤ Pencil beam 相当 (PB系)
 - > Pencil Beam iPlan, FSPB, Pencil Beam Convolution

- ➤ Superposition相当 (SP系)
 - Superposition, AAA, Adaptive convolve, Collapsed Cone

- ➤ Monte Carlo相当 (MC系)
 - Monte Carlo, Acuros XB, XVMC (X-ray Voxel Monte Carlo)

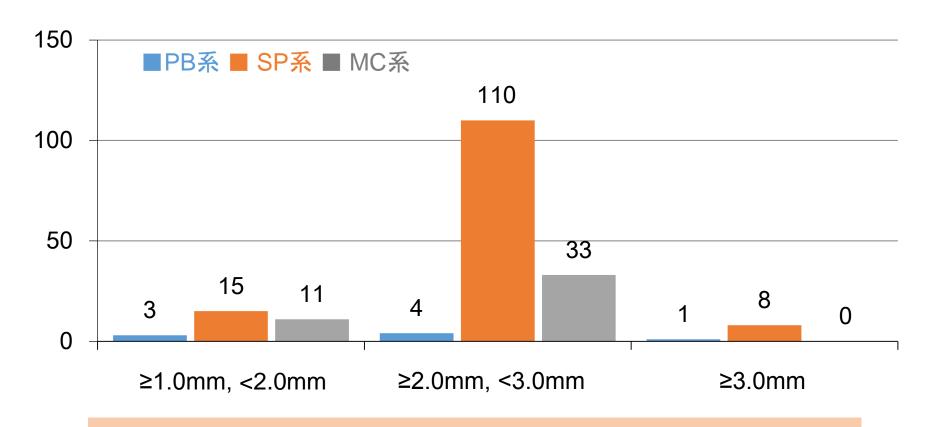
線量計算アルゴリズム

- ✓対策無, 呼吸同期, 息止め照射においてSuperposition系の アルゴリズムを使用する施設が7割以上
- ✓ 追尾照射においてはモンテカルロ系のアルゴリズムが9割以上

線量計算アルゴリズムの推奨

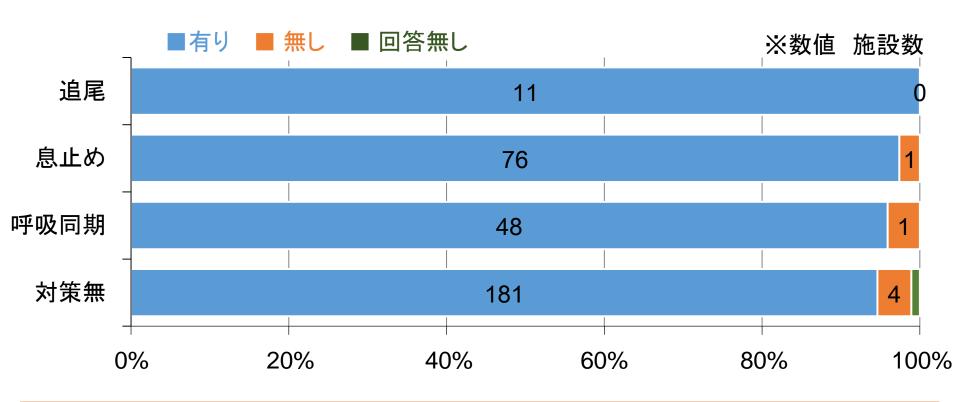
- ✓ 電子平衡が成立しないような小さな肺腫瘍に対する 計算におけるモンテカルロ計算との比較
 - ✓ MC系・SP系のアルゴリズムを推奨(■)

- Lax I et al., Acta Oncol 2006;45:978–988.
- Panettieri V, et al., Phys Med Biol 2007;52:4265–4281.
- Morgan AM, et al., Radiother Oncol 2008;86:48–54.

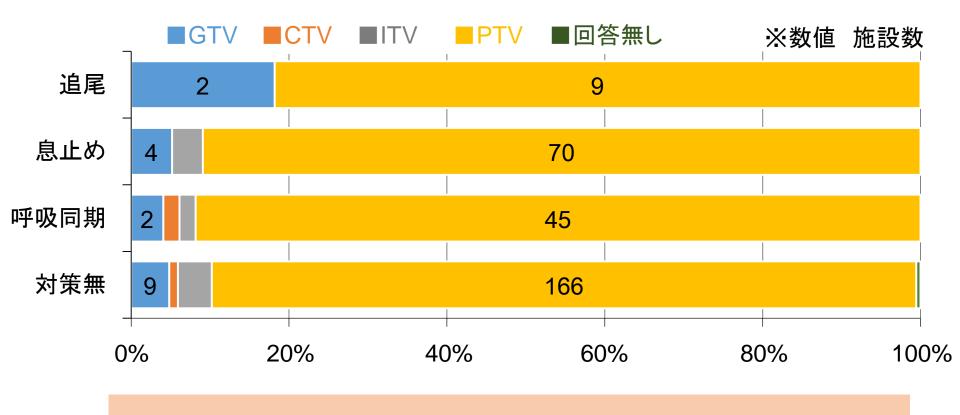

治療計画装置における推奨アルゴリズム IROC Houston QA center

✓ 肺ファントムを用いた実験によって決定

TPS	Acceptable	Unacceptable
Eclipse	AAA, Acuros	Pencil beam
Monaco	XVMC MC, CCC	
Brain Lab IPlan	MC	Pencil beam, Clarkson
Pinnacle	CCC, Adaptive Convolve	Fast Convolve
Ray Station	CCC	
Multiplan	MC	Ray tracing
XiO	Superposition	Modified Clarkson, FFT convolution


http://rpc.mdanderson.org/RPC/home.htm

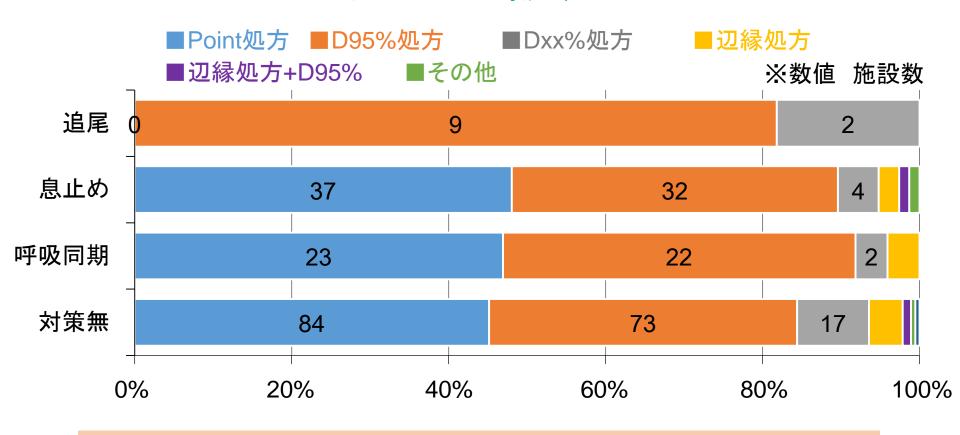
アルゴリズム別グリッドサイズ対策無


- ✓MC系を使用する施設はグリッドサイズは3.0 mm未満
- ✓SP系では8施設でグリッドサイズが3.0 mm以上

不均質補正の有無

✓対策無, 呼吸同期, 息止め照射において不均質補正は95%以上 の施設で使用

処方体積

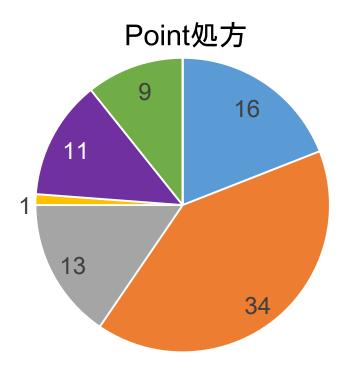

✓8、9割程度の施設においてPTVを処方体積として使用

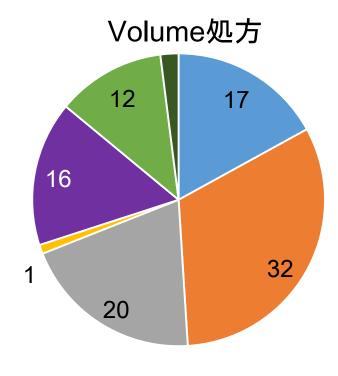
処方線量と分割回数の組み合わせ 最頻度

辺縁	対策有	対策無
48 Gy / 4 回	73 (52.5%)	96 (51.6%)
50 Gy / 4 回	14 (10.1%)	13 (6.9%)
60 Gy / 8 回	9 (6.5%)	10 (5.4%)

中枢	対策有	対策無
60 Gy / 8 回	23 (16.5%)	30 (16.1%)
60 Gy / 10 回	11 (7.9%)	15 (8.1%)
48 Gy / 4 回	4 (2.9%)	4 (2.2%)

処方の設定


✓すべての照射法おいて、半数以上の施設でVolume処方


※Dxx%※辺縁線量%

Dmean, D99%, D80%, D50% 60%, 70%, 80%

線量計算用画像 vs 処方の設定 対策無

- ■Slow Scan 自由呼吸 4D平均(全位相) ■4DMIP(全位相)
- ■息止め撮影■呼吸位相CT■その他

結論

- ✓本邦における肺定位放射線治療の線量計算に関わる設定について、呼吸性移動対策の有無に分けて区別して分析を行った。
- ✓本調査結果は本邦における肺SBRTの治療計画手法について把握して、肺SBRTの標準化を目指す上で有用であると考えられる