[General Session]

April 15 (Thu.) 418

Radiation Therapy (Particle): Proton and BNCT

15:00-15:50

Moderator: Hideyuki Takei

0-001 Improvements of lateral penumbra widths for various optimized parameters in proton pencil beam scanning with and without a multi-leaf collimator.

Osaka Proton Therapy Clinic Yuki Tominaga

0-002 Fundamental study on the effects of activated dental metal in proton therapy for head and neck cancer

> Southern Tohoku Proton Therapy Center Ryohei Kato

- 0-003 Evaluation of the angular distribution of produced light in water during high-energy proton irradiation.
- Nagoya University Hiroto Ushiba 0-004 Dose measurements for biological experiments using synchrotron-based ultra-high dose rate proton beam in Nagoya Proton Therapy Center
- Nagoya Proton Therapy Center Chihiro Omachi 0-005 Hybrid dose calculation algorithm for BNCT based on a combination of Monte Carlo and superposition methods

Kyoto University Takushi Takata

Radiation Therapy (Particle): Proton and Heavy Ion 16:00-17:00 Moderator: Naoki Hayashi

- 0-006 Preparation of East Japan Heavy Ion Center, Faculty of Medicine, Yamagata University Yamagata University Takeo Iwai
- 0-007 Treatment of large tumor for patch-field technique with a beam wobbling method
- SAGA HIMAT Foundation Takeshi Himukai 0-008 Clinical evaluation of RBE-weighted dose and dose-averaged LET in patients receiving carbon-ion radiotherapy for head and neck adenoid cystic carcinoma

National Institute of Radiological Sciences Ryosuke Kohno

0-009 Development of markerless volumetric imaging technique using dual X-ray fluoroscopy Hokkaido University Suzuka Asano 0-010 Feasibility study of MRI-guided proton therapy system

Hokkaido University Yusuke Fujii 0-011 Evaluation of distorted lateral beam profiles in MRI-guided proton therapy

> Hokkaido University Hideaki Ueda

Radiation Therapy (Particle): Heavy Ion

17:10-18:00 Moderator: Mutsumi Tashiro

0-012 Log-data based patient specific quality assurance for heavy-ion therapy

Osaka Heavy Ion Therapy Center Masaaki Takashina

Approximated simulation of carbon ion radiotherapy for moving target to validate 0-013 condition and strategy on Osaka-HIMAK

Osaka Heavy Ion Therapy Center Noriaki Hamatani

0-014 Overview of carbon ion radiotherapy for prostate cancer using fiducial markers in Osaka HIMAK

Osaka Heavy Ion Therapy Center Toshiro Tsubouchi

0-015 The effectiveness of prostate-matching using in-room CT in carbon ion radiotherapy for prostate tumor without fiducial markers.

Osaka Heavy Ion Therapy Center Yushi Wakisaka 0-016 Development of the dose optimization algorithm considering the sublethal damage repair due to interruption in carbon ion radiotherapy.

Osaka University Nao Okada

April 16 (Fri.) 418

Radiation Therapy (Photon/Electron): QA and Others 9:00-10:00

Moderator: Satoru Sugimoto

- 0-017 Superficial dosimetry by Cherenkov emission in comparison to film dosimetry
- National Cancer Center Hospital Hiroyuki Okamoto 0-018 Effect of grid size on dose distribution verification with a two-dimensional diode detector for small irradiation field

Fujita Health University Hospital Yasunori Saito

0-019 Development of a versatile patient-specific QA phantom that also supports non-coplanar beams

Gifu Prefectural Tajimi Hospital Shigeyoshi Kamada

- 0-020 Off-axis Winston-Lutz test for a single-isocenter stereotactic irradiation in L-shape linac Kyoto University Takahisa Kido
- 0-021 Development of vascular dynamic phantom. Tokyo Metropolitan University Yuki Mitsui
- 0-022 Investigation of optimal physical density derivation when using solid phantom Aomori Rosai Hospital Koji Ishita

Radiation Therapy (Photon/Electron): Brachytherapy and Others 10:00–10:50 Moderator: Toru Kojima

0-023 Plan quality assessment for inter-observer error of applicator reconstruction in brachytherapy using in-house application Tokyo Metropolitan University Mihiro Takemori 0-024 Dosimetric effects of air pockets around vaginal cylinder in HDR-Brachytherapy with heterogeneity corrected dose calculation National Cancer Center Hospital Takahito Chiba Simple evaluation of the accuracy of irradiation position for single isocenter multiple ★ 0-025 target stereotactic radiotherapy Fujita Health University Shun Kurata IMRT verification by three-dimensional dose distribution measurements using cylindrical ★ 0-026 plastic scintillator and CCD camera

Kitasato University Yuichi Tanaka

★: English Presentation

Radiation Therapy (Photon/Electron): SBRT

11:00-11:50 Moderator: Motohiro Kawashima

\star	0-027	A treatment planning study comparison between spine or prone position according to the
		lung tumor site in CyberKnife.
		Kobe Minimally Invasive Cancer Center Hiroaki Akasaka
	0-028	Optimal CT image reconstruction method for dose calculation of stereotactic irradiation
		planning of lung tumors with respiratory movements
		Niigata University Tomoya Abe
\star	0-029	Experimental study of the dose distribution in the phase and amplitude gating lung SBRT
		with the baseline shift
		Ibaraki Prefectural University of Health Sciences Kenji Yasue
	0-030	Deviations in dose distribution due to tracking errors in the treatment of shrunken lung
		tumors
		Nagoya University Motoki Kumagai
	0-031	Development of quantitative evaluation method for respiratory stability using correlation
		dimension analysis
		Shinshu University Hospital Yusuke Kojima

April 17 (Sat.) 418

Image Informatics/Medical Information/Education: Image Infomatics and MedicalInformation9:00-9:50Moderator: Taiki Magome

0-032	Detecting pulmonary hypertension using chest x-ray image by convolutional neural network
	Teikyo University Takumasa Tsuji
★ 0-033	An initial study on predicting prognosis of patient in CCU from electrocardiogram using convolutional neural network
	Fujita Health University Ami Suzuki
★ 0-034	Effect of dose calculation algorithms in lung stereotactic body radiation therapy on wavelet-based dosiomic features
	Kyoto University Takanori Adachi
★ 0-035	Estimation of tumor growth trajectories during TKI targeted therapy based on Gompertz model
	Kyushu University Gia Huy Truong
0-036	Effect of contrast on the spatial resolution of Deep Learning Image Reconstruction
	images in the scan plane and slice direction
	Tokyo Women's Medical University Medical Center East Shingo Harashima

Diagnostic Imaging (X-ray)/Magnetic Resonance/Diagnostic Imaging (others): Diagnostic Technology 10:00-10:50 Moderator: Yoshiyuki Nyui

0-037 Evaluation of image quality by various image reconstruction methods in head CT using the acute-stage cerebral infarction phantom model
 Comparison of K-ray tubes for the biplane Angio-Tomosynthesis Kyorin University Kensuke Hori

★ 0-039	Development of a low-energy photon transportation code with a GPU
	Hosei University Shota Sezai
★ 0-040	Electromagnetic simulation analysis of an RF burn injury case on a tattoo
	Hokkaido University Kaito Yamashita
0-041	Development of 808-nm-peak high-spatial-resolution near-infrared-ray laser computed tomography
	Iwate Medical University Uchimaru Medical Center Yuichi Sato
Radiation	Therapy (Photon/Electron): AI and Treatment Planning
	15:50-16:50 Moderator: Masahiko Kurooka
0-042	Predictive translation of oblique images into frontal and lateral images using Deep Learning for CyberKnife system.
	Nagoya University Hospital Toshiki Kato
0-043	Evaluation of auto-segmentation accuracy by cloud-based AI and atlas-based model for prostate cancer
	Tokyo Metropolitan University Yuka Urago
0-044	Deep learning-based detection and classification of MLC modeling errors in VMAT patient-specific QA
	Niigata University Sae Nakamura
0-045	Evaluation of accuracy in CBCT-based adaptive plan for head and neck radiation therapy Kobe University Ai Nakaoka
0-046	Dosimetric characteristics at the surface with metallic and plastic biliary stents in external beam radiotherapy
	Osaka International Cancer Institute Yoshihiro Ueda
★ 0-047	Withdrawn

April 18 (Sun.) 418

Radiation Therapy (Photon/Electron): Monte Carlo 9:00-9:40 Moderator: Yukio Fujita

	0-048	Photon source model based on particle transport in a parameterized accelerator structure
		for Monte Carlo dose calculations of FFF beams
		Tohoku University Suguru Dobashi
★	0-049	Determination of scaling factors of a newly water-equivalent phantom for electron beam
		using Monte Carlo simulation
		Ibaraki Prefectural University of Health Sciences Koichi Hanada
★	0-050	Comprehensive evaluations of an analytical kilovoltage cone-beam CT source model for
		Monte Carlo dose calculations
		Komazawa University Kyohei Fujii
★	0-051	Evaluation of shielding calculation accuracy and optimization simulation of shielding
		wall using monte carlo-based simulations in tomotherapy.
		Takarazuka City Hospital Keisuke Sano

Radiation Measurement/Radiation Protection: Radiation Measurement 1 9:50-10:40 Moderator: Toru Kawachi

- 0-052 A calibration service based on a Japanese primary standard of absorbed dose to water in a high-energy electron beam
- ★ 0-053 Dosimetry with an ionization chamber calibrated by a standard of absorbed dose to water in a high-energy electron beam
 - National Metrology Institute of Japan, AIST Morihito Shimizu
 - 0-054 Response of a diode detector on the buildup dose measurement in inline magnetic fields Kumamoto University Naoki Anami
 - 0-055 Dose-distribution measurement in the treatment plan of CyberKnife using twodimensional poly(vinyl alcohol)-iodide gel dosimeter

National Cancer Center Hospital Kotaro Iijima

0-056 Investigating the effect of glass on UVC Cameras using Monte Carlo simulation Tokyo Metropolitan University Kengo Miyazaki

Radiation Measurement/Radiation Protection: Radiation Measurement 2 10:50-11:50 Moderator: Hiroaki Matsubara

0-057 Measurement of absorbed dose to water at the phantom surface using a semiconductor detector for diagnostic kilovoltage x-ray beams

Kumamoto University Ryuki Tanabe

0-058 A fundamental study of dose-rate dosimeter for X-ray CT scanner using silicon X-ray diode

Iwate Medical University School of Medicine Satoshi Yamaguchi

★ 0-059 Optimization of the laser-induced layer in scintillation crystal bars for PET detectors with DOI

NIRS, QST Akram Mohammadi

0-060 Ion recombination and polarity correction factors for different types of ionization chambers in proton pencil beam scanning

Tsuyama Chuo Hospital Takayasu Haruna

0-061 Time-varying track imaging of carbon ion beam with optically readout glass gas electron multiplier

Teikyo University Keisuke Maehata

★ 0-062 An experiment for characteristic confirmation of a remote changeable Bonner sphere spectrometer for boron neutron capture therapy

Kyoto University Sadaaki Shiraishi

[JSRT-JSMP Joint International Session Oral]

April 15 (Thu.) 501

Nuclear Me	dicine-1	14:00-14:50	Chairman: Keichi Magota Go Akamatsu	
★ (T) IS-001	Application of CNN WI Uniformity in Nuclear M		f Cold Region in the Evaluation of	
★ ① IS-002	4D Branch Network: Cl Training Dataset		ingu College, Korea Young-Sang Kim ET Image Denoising Without Prior	n
★ (T) IS-003	Evaluation of Super-rese	olution of PET Images	atsu Photonics K.K. Fumio Hashimoto Using Generative Adversarial Network okkaido University Kentaro Nishigami	k
★ ① IS-004	Estimation of 10-minute Learning in 18F-FDG D	Acquired Images from	a 5-minute Acquired Images Using Deep an	р
★ ① IS-005	Comparing O-15 Labele		Hokkaido University Mui Saito Among Three Databases te Medical University Toshiaki Sasaki	
Diagnostic	Technology-1	14:55-15:35	Chairman: Toru Yamamoto Hiroyuki Takashima	
★ (T) IS-006	Validation and Reprodu MR Elastography of the		-automatic Quantification Software for	•
★	Different Tissue Suppre Resonance Imaging	ssion Techniques Used	Hokkaido University Yuri Katsuumi I for Breast Implants in Magnetic	i
★ (P) IS-008		zation Using Meglumin	Hospital, Hong Kong Li Xiao e-gadopentetate-glucose Solution and 7.	
★ (P) IS-009	Triple-sensitivity High-s mm-focus Tube and Its	spatial-resolution X-ray	te Medical University Eiichi Sato v Computed Tomography Using a 0.1- t	Э
		Ũ	te Medical University Eiichi Sato	0
Radiation P	rotection-1	15:40-16:30	Chairman: Shinnosuke Matsumoto	C
★	Evaluation of Neutron A Particle Therapy	Ambient Dose Equivale	ent in Intensity Modulated Composite	
★	Research Reactor in Ba	ngladesh	NIRS, QST Shinnosuke Matsumoto n Dose Assessment of TRIGA Mark-II	[
★	Determination of the El the Proton-induced X-ra		of Bangladeshi Medicinal Plants Using	g

★:English Presentation ①:JSRT ②:JSMP

★	P IS-013	Withdrawn
---	-----------------	-----------

★ P IS-014 An Attempt to Reduce the Background ESR Signal in Human Fingernails for Monitoring Accidental Hand Exposures

Hiroshima University Chryzel Angelica B. Gonzales

Raditaion Measurement: Photon 16:35–17:15 Chairman: Makoto Sakama

- ★ (P) IS-015 Evaluation of TRS-483 Protocol for the Dosimetry of Small Static Fields for C-arm and O-ring Linear Accelerators
- ★ P IS-016 Small Field Dosimetry Using a Roos-type Ionization Chamber Komazawa University Masakatsu Takeda
 ★ P IS-017 Beam Quality Conversion Factor and Dose Linearity of Optically Stimulated Luminescence Dosimeter (OSLD) for High-energy Photon Beam

Kanazawa University

★ P IS-018 Enhancing Cherenkov Light Yield by Gold Implants University of Minnesota, USA Keita Okazaki

Radiotherapy: Brachytherapy and Others

17:20-18:10

Chairman: Iori Sumida

Sota Goto

- ★ P IS-019 Development of a Simultaneous Imaging System Made of a Gamma Camera and a CCD Camera for High-dose-rate Brachytherapy Nagoya University Jura Nagata
- ★ P IS-020 Source Position Measurement by Cherenkov Emission Imaging from Applicators for High-dose-rate Brachytherapy

Nagoya University Katsunori Yogo

- ★ P IS-021 Development and Feasibility of a Simple Portable Body Surface Monitoring Device Using an Infrared Camera in Radiotherapy
- Fujita Health University Riki Oshika
 ★ P IS-022 Localization Accuracy of Off-isocenter Targets for Brain Stereotactic Radiotherapy Using SyncTraX FX4
- ★ IS-023
 X-ray Scattering Estimation with Spherical Harmonics in Cone-beam Computed Tomography

Tokushima University Taisei Shimomura

April 16 (Fri.) 501

Raditaion Measurement: Particle	8:00-8:50	Chairman: Hiroaki Kumada
---------------------------------	-----------	--------------------------

★ P IS-024 The Activation Properties of CaI2 Crystal on Neutron Detection by the Self-activation Method with an Iodine-containing Scintillator

Kyushu University Hideya Maeda

★ P IS-025 An Evaluation of Quenching Effects and an Analysis of a Long Half-life Component for Neutron Measurement with Iodine-added Liquid Scintillator

Kyushu University Naoya Sakamoto

★ (P) IS-026	Evaluation of the Position Re an Arrayed LaBr ₃ (Ce) Scinti			ging Detector with
★ (P) IS-027	Evaluation of Internal Expos Boron Neutron Capture Ther	ure Effect in Consid	Kyoto University	
★ (P) IS-028	Responses of the PVA-GTA-			
Particle The	rapy: Carbon Ion	9:00-9:50	Chairman:	Ryosuke Kohno
★ (P) IS-029	Evaluation of Radiation Qual Radiotherapy	ity Variation for B	road Beam Method	of Carbon Ion
★ (P) IS-030	Radial Let Measurements for	Therapeutic Carbo niversity Heavy Ion		Katsuki Narumi kihiko Matsumura
★ (P) IS-031	Development of High-speed Ion Radiotherapy			
★	Development of Log File Ba QA in Carbon-ion Radiother	sed Monte Carlo C		for Patient-specific
★ (P) IS-033	A Monte Carlo Study of Phys Gold Anchor.	ical Dose Perturbat	Toho University tion of Carbon Ion B	
			QST Hospital, QST	Taku Nakaji
Particle The	rapy: Evaluation	10:00-10:50	Chairman: To	oshiyuki Toshito
★ (P) IS-034	Filtering and Gridless Approx Particle Therapy	ach: Imaging Dose	Reduction for Real-	-time-image Gated
★ (P) IS-035	Development of Anatomical ray Image for Adaptive Radi	otherapy in Head a	nd Neck Region	o-dimensional X-
★ (P) IS-036	Inclusion of Energy Layer Str Scanning Proton Therapy		Center Hospital East uation of Dose Deliv	
★ (P) IS-037	A Method for Evaluating the Under Arbitrary Respiratory	Achievement Prob Motion in Particle	Therapy	ed Dose Criteria
★ (P) IS-038	Study of EUD Estimation Us Tool Prior to MBA for PBT	ing Machine Learn	kkaido University 1 ing from Small Dat	
		Но	okkaido University	Sira Jampa-ngern
Medical Info	ormation and Education	15:40-16:10		n: Makoto Sakai Hiroaki Hayashi

★ ① IS-039 Study of Change of the Radiological Inspection by COVID-19 Hanseo University, Korea Da Som Baek

★ (P) IS-040	Prediction of Prost with Extrapolation	tate Cancer Recurrence Us	sing Machine Learning N	Iodels Developed
	Will Linnepolemion	2	Komazawa University	Kouhei Oguma
		C. M. L. I Dl		Ũ
★ (P) IS-041		for Medical Physics and	Cancer Research (SCMP	CK): A Centre of
	Excellence to Figh	-		
	South Asia Centre	for Medical Physics and	Cancer Research, Bangla	adesh
			Hasin	Anupama Azhari
				1
Image Inform	natics	16:20-17:00	Chairman:	lun'ichi Kotoku
★ (P) IS-042	Multi-material Dec	composition Based on Net		
_			Tokushima University	5 5
★ 🕑 IS-043	Denoising and Cor	ntrast Enhancement of MV	/CT Using Deep Learnin	g-based Methods
		The Univ	ersity of Tokyo Hospital	Sho Ozaki
★ (P) IS-044	Radiogenomic Ima	aging Biopsy for EGFR-M	<i>v v i</i>	
A U 10-044	-			-
	Cancer Based on C	Contrast CT Images Using		
			Kyushu University	Kenta Ninomiya
★ 🕑 IS-045	Prediction of the P	osition of External Marke	rs on the Chest and Abde	omen for Latency
-	Compensation in F			5
	compensation in r			M: -1 -1 D-1-1
		-	The University of Tokyo	Michel Pohl
CT: Image C	Juality	17:10-18:00	Chairman: Ka	tsumi Tsujioka
			Ma	asatoshi Kondo
	Investigation the E	angihility of Computing D	val an anovy CT from On a	120 LUE CT Seen
★		easibility of Generating Du		120-kvpC1 Scan
	for Quantitative In	nage Analysis: A Phanton	n Study	
		Kaohsiung Medica	al University, Taiwan C	hing-Ching Yang
★ ① IS-047	De-noising the Ax	ial Image of Dynamic Co	mputed Tomography Per	fusion Using
0.000	-	compositionbased Approa		00000
	Singular value De			C1 01
			ngseo University, Korea	00
★ 🛈 IS-048	Improvement of the	e Visibility of HCC Lesior	ns in CT Images by Optin	nally Colorization
	Based on the Diffe	erences in Chromaticity		
		÷	hu University Hospital	Hiroshi Akamine
			9 1	
★	A Novel Human E	Body Tray for Postmortem		
			Kyorin University Ton	noaki Yamamoto
★ (P) IS-050	Elucidation of Effe	ects of Tube-current Modu	ulation on Three-dimensi	onal Dose
0		Low Pitch Helical Scans		
	Distribution non	Low Then Henear Seans		V 1: O to
			Teikyo University	Yuuki Ogata
CT: Machin	e Learning	18:10-19:00	Chairman: Kats	uhiro Ichikawa
				Shinichiro Mori
			,	
★ 🛈 IS-051	Weakly Supervised	d Classification Scheme o	f Idiopathic Interstitial P	neumonia Using
	Attention-based De	eep Multiple Instance Lea	rning	
		* *	ijita Health University	Nonoko Takeuchi
★	Sketch Raced Lunc	g Cancer CT Image Genera		
	-		aion Osing I inzpix 10Wa	
	of Rare Disease In	e		_
_			Fujita Health University	Ryo Toda
				C T T1 1

★ ① IS-053 A Performance Evaluation of Deep Learning Based Image Denoising for Ultra-low

	Dose CT
	Juntendo University Keisuke Usui
★ ① IS-054	Prediction of Lung Cancer Prognosis Using Feature Extraction by Convolutional Neural
	Network and Machine Learning
	Fujita Health University Yuki Oshita
★ P IS-055	Estimation of CT X-ray Spectrum from Reconstructed Images Using a Deep Neural Network
	Tokushima University Takayuki Higuchi
April 17 (S	Sat.) 501

Radiotherapy: Treatment Planning	8:00-8:50	Chairman: Noriyuki Kadoya
		Masatoshi Hashimoto

★	P IS-056	Quantification of Uncertainty Associated with Image Registration of MR-CT for
		Prostate Radiotherapy: Rationale for MR Alone Radiotherapy
		Yashoda Cancer Institute, Yashoda Hospitals, India Arivarasan Ilamurugu
*	P IS-057	Validation of Robust Optimization Approach of VMAT Treatment Planning of
		Stereotactic Body Radiation Therapy of Lung Cancer
		BP Koirala Memorial Cancer Hospital, Nepal Tirthraj Adhikari
×	P IS-058	Impact of Different Computed Tomography Datasets on VMAT Dose Calculations for
		Lung Tumor in Magnetic Fields
		Kumamoto University Takeshi Ohno
×	P IS-059	In Vivo Dose Calculation in Spine SBRT Based on CBCT Image Acquired During
		VMAT Delivery: First Clinical Case
_	T IS-060	Kyoto University Hospital Hiraku Iramina
×	1010-000	Comparison of Dose Distribution on TPS According to the MLC Speed Variation in VMAT
		Choonhae College of Health Sciences, Korea Yonlae Kim
		Choolinae Conege of Health Sciences, Korea Tolhae Kill
D	م ما الم ما الم	W Missellenseus 10.00 10.50 Chairman Mitaubire Nekemura
П	adiotherap	by: Miscellaneous 10:00–10:50 Chairman: Mitsuhiro Nakamura
	P IS-061	Development of AI-based Prediction Models in Real-time Tumor Tracking
		Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy
*	P IS-061	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Kyoto University Dejun Zhou
*		Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Kyoto University Dejun Zhou Evaluation of Machine Learning-based Prediction Model with Combination of
*	P IS-061	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Kyoto University Dejun Zhou Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in
*	P IS-061	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients
*	P IS-061P IS-062	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri
*	P IS-061	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients
* * *	 P IS-061 P IS-062 P IS-063 	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda
* * *	P IS-061P IS-062	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda Evaluation of Complexity of VMAT Plans Using Radiomic Features of 3-dimensional
* * *	 P IS-061 P IS-062 P IS-063 	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda Evaluation of Complexity of VMAT Plans Using Radiomic Features of 3-dimensional Dose Distributions and Its Correlation to Gamma Passing Rate
* * * *	 P IS-061 P IS-062 P IS-063 P IS-064 	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda Evaluation of Complexity of VMAT Plans Using Radiomic Features of 3-dimensional Dose Distributions and Its Correlation to Gamma Passing Rate Niigata University Natsuki Ishizaka
* * * *	 P IS-061 P IS-062 P IS-063 	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Kyoto University Dejun Zhou Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda Evaluation of Complexity of VMAT Plans Using Radiomic Features of 3-dimensional Dose Distributions and Its Correlation to Gamma Passing Rate Niigata University Natsuki Ishizaka Comprehensive Risk Management Using FMEA in MR Image Guided On-line
* * * *	 P IS-061 P IS-062 P IS-063 P IS-064 	Development of AI-based Prediction Models in Real-time Tumor Tracking Radiotherapy Evaluation of Machine Learning-based Prediction Model with Combination of Conventional and Functional Dosimetric Parameters for Radiation Pneumonitis in NSCLC Patients Tohoku University Shiina Mouri Development of Prognostic Prediction Method with the Novel Radiomic Feature Based on Graph Theory Tohoku University Mariko Umeda Evaluation of Complexity of VMAT Plans Using Radiomic Features of 3-dimensional Dose Distributions and Its Correlation to Gamma Passing Rate Niigata University Natsuki Ishizaka

★:English Presentation ①:JSRT ⑨:JSMP

Nuclear Me	dicine-2	11:00-11:40	Chairman: Tomoyuki Hasegawa
★ (P) IS-066	Experimental Verification Imaging	of the Effect of the	Full-ring Geometry in WGI Compton
★ (P) IS-067		PET Study	NIRS, QST Hideaki Tashima of Tumor Viability in Charged Particle
★ (P) IS-068	Noninvasive Probing of C Application in PET	•	's Medical University Chie Toramatsu re Using Positronium Atom and Its
★ (P) IS-069	Dual Round-edge Detecto		e University of Tokyo Kengo Shibuya reast PET: A Proof of Concept Study NIRS, QST Go Akamatsu
Radiotherap	oy: Prediction	13:30-14:00	Chairman: Taiki Magome
★	Deep Learning-Based Pre- Stereotactic Body Radiation		Pneumonitis After Lung Cancer
★	Prediction of Therapeutic Received Stereotactic Abl	Outcomes for Patients	u University Hospital Taka-aki Hirose with Non-small Cell Lung Cancer Who
★ (T) IS-072	Radiomics Prediction for Body Radiation Therapy	Progression in NSCL	Kyushu University Mai Egashira C Patients Treated with Stereotactic
			Kyushu University Takumi Kodama
Diagnostic	Technology-2 1	14:10-14:50	Chairman: Tomoaki Yamamoto Yuka Matsuura
★	Determination of the Ang Formula for Re-photograp	bhy of the Patella	e Using a Correction Angle Estimation
★ ① IS-074	Association of Twinkling Color Doppler Examination	Artifacts According	a General Hospital Tomoki Kinoshita to the Composition of Urinary Stone in
★ (T) IS-075		Hans of DXA and QCT Fo d Rheumatoid Arthrit	
★	A Study on the Possibility During the Assessment of	y of Detection of Air	Hokkaido University Sara Nakagawa way Aspiration Using NIR Scanner
	-	Dongseo	University, Korea Seung-Min Hwang
MRI: Diffusi	ion Weighted Image	15:00-15:30	Chairman: Yasuo Takatsu Kenichiro Yamamura
★ ① IS-077	Analysis of Dynamic AD motion-compensated Diffe	usion Encoding	rdiac Cycle of the Brain Using Bulk-
★	Validation of a New Imag		Kanazawa University Riho Okamoto I-EOB-DTPA to Identify Whether the

DWI at Both Low and High Bvalues Should Be Affected in Patients with Hepatic Lesions

Sichuan University, China Hehan Tang	Sichuan	Universit	y, China	Hehan	Tang
--------------------------------------	---------	-----------	----------	-------	------

★ ① IS-079 The Value of Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging in the Assessment of Tumor Regression Grade and T Stages After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer Sichuan University, China Lanqing Yang

MRI: Deep Learning 15:40–16:30 Chairman: Hiroto Kan

Tatsuya Hayashi

★ (T) IS-080	Magnetic Resonance Imagin	•	General Adver e, South Korea	
★ (T) IS-081	Multitask Classification Scheme for Glioma in Contrast Enhanced MR Images Using Multiple 3D Convolutional Neural Networks			
	-	Fujita Healt	h University	Hiroto Yamashiro
★ (T) IS-082	Automatic Detection of Extr Based Semantic Segmentati		rain Tissue Usi	ing Deep Learning
		Tokushir	na University	Yuki Matsumoto
★	High Resolution Reconstruct Neural Network	ction of Low-Frequency M	1R Images Usi	ng Convolutional
			•	Yuya Hirakawa
★ ① IS-084	Prediction of Treatment Ou			
	Prostatectomy on MR Imag Machine Learning Methods		ivolutional Ne	ural Networks and
		Fujita He	alth University	Fumiaki Oba
Radiation M	leasurement: X-ray	16:40-17:10	Chairma	n: Nao Ichikawa
				Anna Isaka
★ (T) IS-085	Precise Energy Calibration I X-ray Spectrum	Procedure for X-ray Imagin	ng Detector Us	ing Polychromatic
		Kanaza	awa University	Cheonghae Lee
★	A Study on Dose and Image Inspection		•	U U
		Hanseo Un	iversity, Korea	JaeHyeon Yu
★ ① IS-087	Effect of Changes in Auton Abdominal Posteroanterior	natic Exposure Control De		-
		imsung Medical Center of	Seoul, Korea	Young-Cheol Joo
Radiation M	leasurement: IVR	17:20-17:50		nan: Yukiko Abe
			I	etsuo Kasahara
★ ① IS-088	Evaluation of Radiation En		s for IVR Equi college, Korea	*
★ (T) IS-089	Local Diagnostic Reference	U	0,	C
	Chulalongkorn Memorial H			erantes at 121115

Chulalongkorn University, Thailand Kornkamol Prajamchuea \star T IS-090 Inaccuracy of the Kerma Area Product with the Equalization Filters

★:English Presentation ①:JSRT ④:JSMP

Shiga General Hospital Nao Ichikawa

April 18 (Sun.) 501					
Radiation P	rotection-2	8:00-8:30	0	Chairman: Kos \	uke Matsubara ⁄asutaka Takei
★ ① IS-091	•	r to Calculate Shiel n-Uniform Shielding	•	the Development o	f Three-
★ (T) IS-092		Pediatric Specific On Dose Tracking	Organ Dose ii	nazawa University n Abdominal CT Us	•
★ (T) IS-093	Chulalongkorn University, Thailand Yuparak Innan Evaluation of Radiation Safety During Non-Destructive Testing of Diesel Particulate Filter Using Computed Radiography in Diesel Vehicles: Based on Monte Carlo Simulation				
			Korea	University, Korea	Donghan Jeong
Image Analy	/sis: X-ray	8:40-9	9:30		an: Hideki Kato umi Yamamoto
★ ① IS-094		l Image Phase Only ce Narrowing in Rh		Analysis Can Detec hritis	et Radiographic
★	-	ification of Joint S oftware: Investigati	pace Narrowin		
★ (T) IS-096	•	ase Only Correlatio owing in Rheumate	on Analysis in	kkaido University Detection of Radic	
★	Development of	Semi-automatic Hij		okkaido University Area Measurement	Aimi Taguchi
★	Graduate School of Health Science, Hokkaido University Nanase Hongo Image Quality Evaluation According to Mask Type During X-ray Head Imaging Due to COVID-19 Situation				
	COVID 17 Shuu		Hanseo	University, Korea	Hyeon soo Song
Image Analy	vsis: Deep Lerar	ning 9:4	0–10:10		kuo Kawashita kazu Uchiyama
★ ① IS-099	Deep Learning E Radiography	ased Tooth Disease	e Classificatio	n Using Dental Par	noramic
★ (T) IS-100	An Efficiency of Using Chest X-R		in Deep-Lear	University, Korea ning Based COVID	-19 Classification
★	*		cation Pipelin poral Domain	University, Korea e for Acute Myocar Analysis Deep Neu Useth University	rdial Infarction in Iral Network

Fujita Health University Ryosuke Muraki

Particle ther	apy: Miscellaneous	10:20-11:10	Chairmar	n: Taku Inaniwa
★ (P) IS-102		ligh Energy Neutrons Ger Gunma University Heavy I		bon Ion Beam Makoto Sakai
★ (P) IS-103		Carlo Simulation for Eval t Repair Using Geant4-DN	NA	
★	Deep Learning-based D Therapy	ose Image Prediction from	,	Dousatsu Sakata age for Proton
★ (P) IS-105	Development of an Integrays and Luminescence	grated Imaging System for	Nagoya University Simultaneous Imag	•
★ (P) IS-106		in Proton Beam Therapy		Maki Kitano
Particle ther	apy: BNCT	To 11:20-12:00	ohoku University Chairman: Sat	M. Rafiqul Islam
★ (P) IS-107		on of Dose Calculation Alg		
★ (P) IS-108	Neutron Dose Evaluatio	n with Real-time Detector Kvot	Kyoto University rs at Whole Body I to University Nish	Position in BNCT
★ (P) IS-109	Study of Optimal Irradia Cyclotron-based BNCT	tion Method for Superficia	al Tumors Using a H	Hydrogel Bolus in
★ (P) IS-110	1	Distribution Shifter to Fit eat Superficial Tumours	Kyoto University t Inside the Collima	
	Kansai Bl	NCT Medical Center, Osak	a Medical College	Naonori Hu