Jsmp Medical Physics Summer Seminar 2008

 In Jozankei - SAPPORO

Thursday, August 21(afternoon)Saturday, 23( noon), 2008

Registration fee:

\32,000 (member)

\25,000 (member student)

\35,000 (non-member)  stay and all in program included.

JRS; 医学物理士業績評価単位:10         







Hotel: 061-2302 札幌市南区定山渓温泉東4丁目 

定山渓グランドホテル瑞苑   011-598-2214



8/21(木)11:15 新千歳空港発 ;  8/23(土)13:15定山渓車庫前発

Contact us

医学物理サマーセミナー2008事務局 jsmp08_summer@nirs.go.jp

Day 1: Thursday August 21

14:00-14:15   Welcome and Course Overview           Shinichi Wada Ph.D.                   

14:15-15:35   Radiological Physics and Dosimetry I

Masayoshi Ishikawa Ph.D.

15:45-17:05  Radiological Physics and Dosimetry I

Masayoshi Ishikawa Ph.D.

17:20-18:40   Nuclear Medicine/Imaging      Taiga Yamaya Ph.D.

19:30-       Banquet       

Day 2: Friday August 22

5:30-6:30  run or walk

7:00-8:30   breakfast

9:00-10:20   Nuclear Medicine/Imaging          Taiga Yamaya Ph.D.                

10:35-11:55  Magnetic Resonance Imaging Toru Yamamoto Ph.D. 12:00-13:00  Lunch














    Day 2: Friday August 22, (cont.)

13:40-15:00 Magnetic Resonance Imaging      Toru Yamamoto Ph.D.        

15:15-16:35 Health Physics/Radiation Safety   Keiichi Akahane Ph.D.                                   

16:50-18:10 Health Physics/Radiation Safety   Keiichi Akahane Ph.D.                                

19:00-20:00  Supper

20:30-22:00 Night Session  Informal Question and Answers

      Chaired by Hideyuki Mizuno Ph D & Masataka Komori Ph.D.

Day 3: Saturday August 23

7:00-8:30  Breakfast

9:00-10:20  External Beam Radiation Therapy  Ryosuke Kohno Ph.D.

10:35-11:55  External Beam Radiation Therapy

 Ryosuke Kohno Ph.D.

12:00    Closing remark   


Medical Physics Summer Seminar 2008 in Jozankei SAPPORO




TRadiological Physics and Dosimetry I

Masayoshi Ishikawa Ph.D.

1. Quantities for describing the interaction of ionizing radiation with


(1) Kerma

(2) Absorbed dose

(3) Exposure dose

(4) Quantities and units for use in radiation protection

2. Charged-particle and radiation equilibria

(1) Radiation equilibrium

(2) Charged-particle equilibrium

(3) Transient charged-particle equilibrium


3. Cavity theory

(1) Bragg-Gray theory

(2) Spencer cavity theory

(3) Burlin cavity theory


UNuclear Medicine/Imaging

Taiga Yamaya Ph.D.


























VMagnetic Resonance Imaging

Toru Yamamoto Ph.D.

1). Basic Principles

(a) Nuclear magnetic moment and spin

(b)The static magnetic field and the equilibrium distribution

(c) The Larmor frequency and the radiofrequency field

(d) The lab and rotating frames of reference

(e) Relaxation mechanisms and effects of common contrast agents

(f) The basic spin-echo sequence

(g) Contrast in spin-echo imaging

(h) Spatial encoding using linear magnetic field gradients

(i) Properties of “k-space”

2). Hardware

(a) The static magnetic field subsystem

(b) The radiofrequency field subsystem

(c) The gradient field subsystem

3). Basic Image Quality Issues

(a)Signal-to-noise ratio and contrast-to-noise ratio in MRI

(b) Resolution

4. Basic Pulse Sequences

(a) Spin-echo sequence

(b) Gradient-echo sequences

(c) Fast spin-echo sequence

(d) Inversion recovery sequences and applications

(e) Common sequence options (spatial and chemical saturation techniques)

(f) Echo planar imaging

(g) Parallel imaging

(h) MR angiography sequences

(i) Diffusion sequences

(j) Perfusion sequences

(k) Functional MRI

(l) MR spectroscopy sequences

5. Artifacts

6. Basic Safety in MRI

7. Topix

(a) MR-guided interventions

(b) MR elastograpy

(c) Molecular imaging


WHealth Physics/Radiation Safety

Keiichi Akahane Ph.D.

1.    History of Radiation Protections

1.1.   History

1.2.   Organizations

2.    Use of Radiation

2.1.   Sources

2.2.   Fields

3.    Biological Effects and Risks of Radiation

3.1.   Biological Effects of Radiation

3.2.   Stochastic Effects

3.3.   Deterministic Effects

3.4.   Risk Estimations of Radiation

4.    Quantities and Units of Radiation Protection

4.1.   Categories

4.2.   Phantoms

5.    Fundamental System of Radiation Protection

5.1.   ICRP

5.2.   Categories of Exposures

5.3.   Purposes and Methods of Protection

5.4.   Radiation Effects and Doses

5.5.   Practice and Intervention

5.6 Justification, Optimization and Dose Limit

6.    Regulations of Radiation Protection

6.1.   Atomic Energy Basic Law

6.2.   Law concerning Prevention of Radiation Hazards due to Radioisotopes, etc.

6.3.   Medical Service Act

6.4.  Occupational Safety and Health Act

6.5.   National Personnel Authority Rule

6.6.   Other Regulations

7.    Practice of Radiation Protection and Management

7.1.   Monitoring

7.2.   Estimations of External Exposures

7.3.   Estimations of Internal Exposures

7.4.   Equipment of Measurements

7.5.   Education and Training

7.6.   Management

7.7.   Shielding

8.    Medical Radiation Protection

8.1.   Characteristics

8.2.   Methods of Protection

8.3.   Estimations of Radiation Exposures

8.4.   Pregnancy

8.5.   Diagnostic Radiology

8.6.   Radiotherapy

8.7.   Nuclear Medicine

8.8.   Others

9.    ICRP 2007 Recommendation

9.1.   Framework

9.2.   Differences between 1990 and 2007

10. Topics


XExternal Beam Radiation Therapy

Ryosuke Kohno Ph.D.

Part 1

1. はじめに

2. 光子線と物質の相互作用 

3. 放射線の強さや量

4. 光子線スペクトル

5. 逆二乗法

6. 光子線による深部線量分布

7. 放射線治療パラメータ

8. Percentage Depth Dose

9. Tissue-Air Ratio

10. Scatter-Air Ratio

11. Tissue-Phantom RatioTPRTissue-Maximum RatioTMR

12. Scatter-Maximum RatioSMR

13. Off-Axis Ratioとビームプロファイル

14. 水ファントムにおける等線量分布

15. 電離箱による相対線量測定

16. MU算出

Part 2


1. 水中における深部線量分布

2. 線量に関与するパラメータ

3. 電子線に対するPDD測定

4. 等線量曲線


1. はじめに

2. 水吸収線量校正定数ND,W

3. 標準測定法01

4. レファレンス線量計の校正 

5. 高エネルギー光子線の校正点吸収線量の測定

6. 高エネルギー電子線の校正点吸収線量の測定